Improving Volatility Forecasts Using Market-elicited Ambiguity Aversion Information
Raymond H.Y. So† and Tarik Driouchi‡

TECHNICAL APPENDIX – Option Pricing under Ambiguity (Based on Driouchi, Trigeorgis and So, 2016)

Let B be the price of a riskless bond with instantaneous rate of return r such that:

$$\frac{dB}{B} = r\,dt \quad (A1)$$

Let O be the price of a contingent-claim (e.g., a European call or put option on the S&P index) which depends only on S and time t, $O(S,t)$. From Ito’s lemma and Eq. (1), the dynamics of option price O can be written ($\forall m \in [-1,1], \forall s \in [0,1]$) as:

$$dO(S,t) = \frac{\partial O}{\partial t} \, dt + \frac{\partial O}{\partial S}[(\mu + m\sigma)S\,dt + (s\sigma)S\,dZ] + \frac{1}{2} \frac{d^2 O}{dS^2}[(s\sigma)S\,dZ]^2$$

$$+ [(\mu + m\sigma)S\,dt]^2 + [(s\sigma)S\,dZ \times (\mu + m\sigma)S\,dt]] \quad (A2)$$

This simplifies to:

$$dO(S,t) = \left[\frac{\partial O}{\partial t} + \frac{\partial O}{\partial S} (\mu + m\sigma)S + \frac{1}{2} \frac{d^2 O}{dS^2} (s\sigma)^2 \right] dt + \frac{\partial O}{\partial S} (s\sigma)S\,dZ \quad (A3)$$

Using Eq. (1), the level(s) of marginal utility in the economy ξ under Choquet ambiguity is:

† King’s Business School, King’s College London, University of London. Bush House, 30 Aldwych, London WC2B 4BG, United Kingdom; Tel: +44 020 78484943; Email: raymond.so@kcl.ac.uk
‡ King’s Business School, King’s College London, University of London. Bush House, 30 Aldwych, London WC2B 4BG, United Kingdom.
\[\frac{d\xi}{\xi} = [mg(\xi, S) + f(\xi, S)]dt + sg(\xi, S)dz \]

(A4)

This results from standard economic dynamics \(\frac{df}{\xi} = f(\xi, S)dt + g(\xi, S)dW \) (see Harrison and Kreps, 1979) and the characteristics of \(W \) in the Choquet ambiguity universe. Functions \(g \) and \(f \) help derive the pricing kernel under uncertainty. Thus:

\[d(\xi B) = \xi (rBdt) + B[(mg(\xi, S) + f(\xi, S))\xi dt + sg(\xi, S)\xi dz] \]

\[= \xi B[(r + mg(\xi, S) + f(\xi, S))dt + sg(\xi, S)\xi dz] \]

(A5)

Applying martingale theory, the drift \((dt)\) term is set to zero. This implies:

\[r + mg(\xi, S) + f(\xi, S) = 0 \text{ or } f(\xi, S) = -r - mg(\xi, S) \]

(A6)

Following a similar procedure for \(S \):

\[d(\xi S) = \xi dS + Sd\xi + d < \xi, S > \]

(A7)

\[d(\xi S) = \xi S[\mu + m\sigma]dt + s\sigma dz + S\xi[\mu \xi Sg(\xi, S)]dt + sg(\xi, S)\xi dz + s^2\sigma^2\xi Sg(\xi, S)dt \]

\[= \xi S[\mu + m\sigma - r + s^2\sigma g(\xi, S)]dt + S\xi[s\sigma + g(\xi, S)]dz \]

(A8)

Setting the drift term to zero, we obtain the ambiguity-adjusted Sharpe ratio \(g(\xi, S) \):

\[(\mu + m\sigma) - r + s^2\sigma g(\xi, S) = 0 \text{ or } g(\xi, S) = \frac{[r - (\mu + m\sigma)]}{s^2\sigma} \]

(A9)

The market pricing kernel follows Harrison and Kreps (1979) dynamics but, due to market incompleteness, multiple marginal utility levels and Knightian uncertainty, \(f \) and \(g \) are not unique as they are affected by investors’ ambiguity parameters \(m \) and \(s \). This means that Choquet ambiguity impacts the fundamental component of the market pricing kernel (via parameters \(m \) and \(s \)) but not the purely sentimental element (see Cochrane, 2001; Shefrin, 2005). Relaxing this general (market incompleteness) assumption reduces to
the perfect replication or risk-neutral case of Black-Scholes (1973) OPM. Using the results from Eqs. (A6) and (A9):

\[
\frac{d\xi}{\xi} = f(\xi, S) dt + g(\xi, S) dz
\]

\[
= -r - m\left\{\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right\} dt + \left\{\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right\} dz
\]

(A10)

Consider the value of a call or put option \(O\) written on underlying stock index \(S\) (with dividend yield \(\delta\)).

\[
d(\xi O) = \xi dO + O d\xi + d < \xi, O >
\]

\[
= \xi \left\{\frac{\partial O}{\partial t} + \frac{\partial O}{\partial S} (\mu - \delta + m\sigma)S + S^2 \frac{1}{2} \frac{d^2 O}{dS^2} (s\sigma)^2 \right\} dt + \frac{\partial O}{\partial S} (s\sigma)S dz
\]

\[
+ \xi O \left\{-r - m\left\{\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right\} dt + \left\{\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right\} dz\right\}
\]

\[
+ \xi \left\{\left(\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right) \frac{\partial O}{\partial S} (s\sigma)S dt\right\}
\]

(A11)

Setting the drift (dt) term of the option to zero results in the fundamental equation for pricing derivatives or contingent-claims \(O_{\text{e-p}}\):

\[
\xi \left\{\frac{\partial O}{\partial t} + \frac{\partial O}{\partial S} (\mu - \delta + m\sigma)S + S^2 \frac{1}{2} \frac{d^2 O}{dS^2} (s\sigma)^2 \right\} dt + \xi O \left\{-r - m\left\{\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right\} dt\right\}
\]

\[
+ \xi \left\{\left(\frac{[r - (\mu + m\sigma)]}{s^2 \sigma}\right) \frac{\partial O}{\partial S} (s\sigma)S dt\right\} = 0
\]

(A12)

Solving Eq. (A12) for European options written on \(S\) leads to Eqs. (3-5).

References for the Technical Appendix:
